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Ice Accretion Prediction For a Typical Commercial Transport Aircraft

C. S. Bidwell

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio

SUMMARY

Ice accretion calculations were made for a modem commercial transport using the NASA,

Lewis LEWICE3D ice accretion code. The ice accretion calculations were made for the wing and

horizontal tail using both isolated flow models and flow models incorporating the entire airplane.

The isolated flow model calculations were made to assess the validity of using these simplified

models in lieu of the entire model in the ice accretion analysis of full aircraft. Ice shapes typifying

a rime and a mixed ice shape were generated for a 30 minute hold condition. In general, the calcu-

lated ice shapes looked reasonable and appeared representative of a rime and a mixed ice condi-

tions. The isolated flow model simplification was good for the main wing except at the root where

it overpredicted the amount of accreted ice relative to the full aircraft flow model. For the horizon-

tal tail the size and amount of predicted ice compared well for the two flow models, but the posi-

tion of the accretions were more towards the upper surface for the aircraft flow model relative to

the isolated flow model. This was attributed to downwash from the main wing which resulted in a

lower effective angle-of-attack for the aircraft horizontal tail relative to the isolated horizontal
tail.
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Airplane angle-of-attack, degrees

Span of wing, m

Chord length, m
Pressure coefficient

Droplet diameter, _tm

Roughness factor, m

Liquid Water Content, g/m 3

Median Volume Diameter, l.tm
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Free stream pressure, Pa

Surface distance, cm

Ice accretion time, seconds

Free stream temperature, K

Free stream velocity, rrds

Spanwise distance from root, m

Collection efficiency

I. INTRODUCTION

The problem of aircraft icing has plagued man since the beginning of flight. Ice, in general

causes increased drag, decreased lift, decreased propulsive thrust, increased weight, reduced sta-

bility, etc., all of which can make an aircraft less controllable and more prone to fall out of the sky.

Simultaneously with the problem of icing came the desire to rid ourselves of this problem, which

led to the task of trying to understanding the ice accretion phenomena. To better protect aircraft

from the icing, the icing phenomena needed to be understood. Early attempts at understanding the

cause and effects of icing included various flight tests and some open air icing tests atop Mount

Washington (Ref. 1). Some early analytical work was done by Langmuir and Blodgett to calculate

the collection efficiencies of cylinders using a mechanical integrator with numerous simplifica-

tions (Ref. 2). Much was done to quantify the effect of icing, but limited insight was gained into

the underlying physics of icing due to deficiencies in the analytical and experimental tools avail-

able to the early researchers. From this early work, conservative engineering tools were devel-

oped which allowed design of ice protection systems and allowed aircraft to fly safely.

With the advent of high speed computers in the past sevaral decades and the desire to opti-

mize system design, the task of analytically predicting the icing phenomena has been undertaken.

Many computer codes have been written in the past decade which calculate ice accretions for 2D

airfoils (Ref. 3-6). Calculations of ice accretion for some simple 3D geometries have been made

in the past several years (Ref. 7-9). These cases have been limited to isolated portions of an air-

craft and mainly to the wing and tail sections. The work presented here is the first work which

attempts to analyze the entire aircraft and the first work which attempts to assess the validity of

the isolated model simplification. Ice accretion predictions on the wing and horizontal tail were

made using the aerodynamic model of the entire aircraft and using isolated aerodynamic models.

A typical commercial transport configuration was used for the calculations.

II. ANALYTICAL METHOD

The NASA, Lewis ice accretion code (LEWICE3D) was used to do the ice accretion anal-

ysis (Ref. 10). This computer program has been used in previous calculations of isolated, finite

wings (Ref. 7-9). This work represents the first application of the code to the full aircraft.

The LEWICE3D code incorporates flow, trajectory, heat transfer and geometry modifica-

tion analysis into a single computer program with a multitude of capabilities. Flow can be calcu-

lated for arbitrary 3D lifting and nonlifting bodies with external flow. Calculations of arbitrary



streamlinesandtrajectoriesarepossible.Thecodehasthecapabilityto calculatetangenttrajecto-
riesandimpingementefficienciesfor singledropletsor dropletdistributions.Iceaccretionscanbe
calculatedat arbitraryregionsof interestfor lifting surfacesin amuhistepfashionin eithera sur-
facenormalor tangenttrajectorydirection.Additionally,geometryfor lifting surfaces(i.e. airfoil
surfaces)canbemodifiedautomaticallyateachtime stepto reflect theice shape.

Themethodologyusedin theLEWICE3D analysiscanbebrokeninto sevenbasicsteps
for eachsectionof interestateachtime step.In thefirst steptheflow field is generated.Secondly,
surfacestreamlinesarecalculated.Thirdly, tangenttrajectoriesarecalculatedat theregionof
interest.An arrayof particlesisreleasedbetweenthetangenttrajectoriesin thefourthstep.These
impactingparticlesareusedto calculatecollectionefficiencyasafunction of surfacedistance.
Thefifth stepinvolvesinterpolatingor extrapolatingthecollectionefficienciesontothestream-
lines.In thesixth steptheiceaccretionfor thestreamlineiscalculated.During theseventhand
final stepthegeometryismodified.

Therearefour basicprogramelementscontainedin theLEWICE3D jobstream;a flow
analysis,atrajectoryanalysis,astreamlineanalysisandaniceaccretionanalysis.Theflow codeis
basicallythe 1storder,3D panelcodeof Hess-Smith(Ref. 11-12)for arbitrarylifting andnonlift-
ing bodieswith externalflow with modificationsby Hillyer Norment(Ref. 14)to allow leaking
panels(usedto simulatemassflows throughorifices).It incorporatesvariabledimensioningto
allow easyadoptionto differentsizedcomputersandproblems.Thetrajectoryanalysisis basi-
cally thatof Hillyer Normentwith modificationsbyBidwell andMohler (Ref. 10)to thevelocity
calculation(vectorized)andby Bidwell to thetangenttrajectorysearchscheme(replacedwith
moreefficient scheme).At theheartof thetrajectoryanalysisis thevariablesteppredictor-correc-
tor integrationschemeby Krogh (Ref. 15).Thesurfacestreamlineanalysisusesavariablestep
sizefourth-orderRunge-Kuttaintegrationschemedevelopedby Bidwell (Ref. 10).The iceaccre-
tionmodel is basicallythatof theLEWICE2Dcodeappliedalongsurfacestreamlines(Ref.4,
16).

III. CONFIGURATION

The conditions and geometry for the analysis were chosen to typify a commercial trans-

port in a hold condition. The configuration used in the analysis, which was similar to a Boeing

737 airplane, was chosen to be consistent with those of a wind tunnel model to be used at Langley

Research Center for iced stability and control measurements. The coordinates for this model were

obtained from Simha Dodbele at Langley Research Center. A hold condition was chosen because

it was a crucial design point for the ice protection systems on a commercial transport.

The aircraft model used was a simplified version of the Boeing 737 airplane. The engine

nacelles and engine pylons were not included in the flow model. The wings were modeled using a

single element model with retracted flaps and slats. The deletion of these features from the aircraft

should not be deemed too severe considering the position of the engines and the position of the

flaps and slats in a typical hold condition.

Two flight conditions were chosen to explore limiting points of interest in the icing enve-

lope for a hold condition. These points yield a typical rime and mixed icing condition. For both



flight conditionstheairplaneangle-of-attack,yawangle,altitude,andairspeedwerechosento be
0 degrees,0 degrees,1000m,and135m/srespectively.Theholdor icing timefor bothconditions
waschosento be30minutes.In addition,for bothflight conditionsaMedianVolumeDiameter
(MVD) of 20micronswaschosenasindicativeof a typicaldropsize.A temperatureof 243.1K
andanLWC of .20g/m3werechosenfor therime case.A temperatureof 263.7K andanLWCof
.695g/m3werechosenfor themixedcase.

Thecomputerprogramparameterswerechosenfromexperience,correlationsandadesire
to limit thecomputationalresourcesrequired.A single drop size and icing time step were chosen

for the calculations The calculations were made at 6 spanwise stations on the wing and at 3 span-

wise stations on the horizontal tail. In the wing analysis 3 spanwise stations were distributed on

the outer portion of the wing and 3 were distributed on the shoulder or inner portion of the wing.

The spanwise stations were chosen to be at the 10%, 50% and 90% stations on the outer wing, the

inner wing, and the horizontal tail. The 10% and 90% span stations were chosen as conservative

spanwise limits for the LEWICE3D methodology. Outside of these limits spanwise pressure gra-

dients become large and the strip theory assumptions built into the LEWlCE3D ice accretion code

can be violated. The full aircraft calculations for the wing and horizontal tail were done separately

using different aerodynamic models. The aerodynamic models used for each of the cases was

refined in the area where the ice accretions were to be calculated. This allowed for fewer panels

and smaller computational times.

Additional calculations were made using isolated models of the wing and tail. These were

done to understand the correlation between the full airplane result and the isolated airfoil result,

The isolated airfoil simplification is commonly used in the icing analysis of aircraft to reduce cost

and complexity. A' typical isolated model may have 60% fewer panels than its full aircraft coun-

terpart, resulting in a 60% savings in computer time. The calculations were made on the NASA
Lewis Research Center CRAY XMP and on an IRIS Model 4D/440/VGX. The calculations for

the entire aircraft, which included 6 stations on the wing and 3 stations on the horizontal tail,

required approximately 10 hours of CPU time on the Cray XMP and approximately 100 hours of
CPU time on the IRIS workstation. The isolated calculations, which were made at the same loca-

tions, required approximately 4 hours and 40 hours of CPU time on the CRAY XMP and IRIS

workstation respectively.

IV. ANALYSIS

Two icing conditions and two aerodynamic flow models were used in the analysis of the

wing and horizontal tail. The two icing conditions were chosen to explore a rime and a mixed ice

hold condition for the wing and tail. Two flow models were used in the analysis of the wing and

tail elements; an isolated model of the element ("isolated" model), and a model with the element

and the remainder of the aircraft modeled (the "aircraft" model). The isolated flow models were

used to assess the validity of using the isolated flow model instead of the actual flow model in the

icing analysis.

The wing analysis panel models are shown in Figures 1 and 2. The isolated model con-

tained 4320 panels while that of the aircraft model contained 7292 panels. Figure 3 depicts the air-

foil section at the five spanwise stations where the analysis was done. In general the wing was



complex,havingtaper,twist andairfoil sectionvariation.Figure4 showsthepressuredistribu-
tionsateachof thespanwisestationsfor themodels.For bothmodelsthesectionlift coefficient
increasesastheroot is approacheddueto thetwist in thewing. Theagreementin thepressuredis-
tributionat thetip is almostperfectfor thetwomodels,but fallsoff astheroot is approached.The
sectionlift coefficientfor the isolatedmodelis greaterthanfor theaircraftmodeldueto theeffect
of thefuselage.

Thecollectionefficiencyfor thetwo aerodynamicwing modelsis shownif Figure5. In
general,for bothmodels,theshapeof thecollectionefficiencycurvesweresimilarexceptfor the
mostinboardsection.Thecurvesshowthatthemajority of wateris collectingon theuppersur-
face(i.e. anegativesurfacedistancefrom thehighlight) indicativeof anegativeangle-of-attack,
althoughthewing wasat aslightpositiveangle-of-attack.Thiswasdueto thelow angle-of-attack
andcamberof thewing. Theshapesof thecollectionefficiencycurvesaresimilarat theouterfour
stationsbecausetheairfoil sectionsaresimilar.Theairfoil sectionsatthetwoinboardsectionsare
muchblunterhencethecollectionefficiencycurvesaremorerounded.In general,for thethree
outer stations,themaximumcollectionefficiencydecreasedwhile theupperandlower impinge-
ment limits movedmoretowardsthe undersideor pressuresideof thewing astheroot was
approached.This is dueto theincreasedinertiaparameter(resultingfrom theincreasedchord)
andeffectiveangle-of-attackastheroot is approached.At thefourth station,which hasthesame
sectionastheouterthreestations,themaximumcollectionefficiencydecreasedrelativeto the
outerthreestationbut theextentof impingementincreasedslightly.This canbeattributedto the
increasein thesweepangleof theleadingedgeat theinboardportionof thewing. Increased
sweepanglecausesareductionin maximumcollectionefficiencyandan increasein extentof
impingement.At thefifth andsixthstationsthemaximumcollectiondecreasedandtheextentof
impingementincreasedover theouterstations.Thisdecreasein maximumcollectionefficiency
canbeattributedto the increasein chord,while theincreasedextentof impingementcanbeattrib-
utedto the increasedsweepangleandthebluntersectionshape.

As wasthecasefor thepressuredistribution,theagreementin collectionefficiency
betweenthetwo modelsis almostperfectatthetip, butworsensastheroot is approached(Figure
6). Only at the inner two stationsis therein appreciabledifferencein thecollectionefficiency
curves.At thefifth stationfor bothmodels,themaximumcollectionefficiencyandthelower
impingementlimits areaboutthesame,while theupperimpingementlimit of theairplanewing is
increasedslightly overthe lower impingementlimit of theisolatedwing. This is dueto adiffer-
encein effectiveangle-of-attackbetweenthetwo models.Theairplanewing at thisstationhasa
slightly smallereffectiveangle-of-attackthantheisolatedwinghencethedropletsimpingefurther
backon theuppersurface.At thesixthandmostinboardstationthemaximumcollectioneffi-
ciencyandupperimpingementfor bothmodelsis aboutthesamewhile the lower impingement
limit is furtherbackfor the isolatedmodel.This canbeexplainedonceagainby thefact thatthe
aircraft wing is a(a lowereffectiveangie-0f-attackthantheisolatedwing. Thedifferencein the
way thatthelower angle-of-attackis revealedin thecollectionefficiencycurvesbetweenthefifth
andsixth section,(i. e. oneshowsamuchdifferentupperimpingementlimit andoneshowsa
muchdifferentlower impingementlimit) isduetotheradicallydifferent sectionshapes.Themost
inboardsectionis muchmoreroundedon its undersidehenceasmalldecreasein angle-of-attack
at arelatively low angle-of-attackwill producealargerchangein thelower impingementlimit. At
thefifth stationthesectionis lessroundedon its underside,hencea smalldecreasein effective



angle-of-attackatarelativelylow angle-of-attackwill showupmoreupontheupperimpingement
limit.

Theiceaccretionshapesfor boththerime andmixedconditionsandfor bothflow models
areshownin Figures7-10.For boththerime andthemixedconditionsaroughnessfactorof .0013
m wasusedin the ice accretioncalculations.Thisvaluehadbeenusedin previouscalculations
with goodagrement(Ref.8).Doublingor halvingtheroughnessfactordid notsignificantlyaffect
theresultingiceshape,andin light of theabsenceof experimentaldata,andthereasonable
appearanceof theresultingiceshapesit wasdeemedagoodvalue.In general,therime andmixed
shapeslookedreasonableconsideringthecollectionefficienciesandthepressuredistributions
observed.Theiceshapesfollowedthetrendsobservedfor thecollectionefficiency.Thatis, asthe
root wasapproached,theice shapeheightdecreasedandits extentincreasedor decreasedaccord-
ing to thelocalextentof impingement.Thecomparisonbetweentheisolatedandaircraftwing ice
shapeswasexcellentat all but theroot section.This agreementwasexpectedconsideringthe
goodagreementbetweencollectionefficiencyandpressuredistributionfor the isolatedandair-
craftwing models.At theroot thedifferencesin thepressuredistributionandcollectionefficiency
producesomedifferencesin theresultingiceshapebetweentheisolatedandaircraftwing,
althoughnot much.

Theflow modelsfor the isolatedandaircrafthorizontaltail areshownin Figures 1! and

12. The isolated panel model contained 1800 panels while that of the aircraft model contained

5532 panels. The airfoil sections for the three spanwise sections analyzed are shown in Figure 13.

The horizontal tail was of a simple tapered design. The pressure distributions for both models are

shown in Figure i4. The pressure distributions reveal a negative lift coefficient. This is due to the

relatively low aircraft angle-of-attack, the inverse camber of the tail section (i.e. the tail camber

was in the opposite direction of the wing camber), and the fact that the horizontal tail is mounted

at a slightly negative angle-of-attack relative to the aircraft angle-of-attack (about I degree). Also,

the pressure coefficients display a slight fall off in section lift as the root is approached, a result

indicative of a simple tapered wing with no twist. From the pressure distributions it can be seen

that the effective angle-of-attack for the isolated model is less than that for the actual model. The

difference in effective angle-of-attack increases as the root is approached. This difference is

caused by downwash from the main wing onto the horizontal tail.

The collection efficiencies for the two tail models are shown in Figure 15. In general, the

maximum collection efficiency decreased, the extent of impingement increased, and the region of

impingement moved more towards the upper surface of the wing as the root was approached. The

decrease in the maximum collection efficiency and increase in the extent of impingement is due to

the increase in chord length as the root is approached. The collection efficiency for the horizontal

tail, which is relatively blunt and at a low angle-of-attack, behaves much like a swept, tapered cyl-

inder with increasing diameter towards the root. The maximum collection efficiency for a tapered

swept cylinder decreases and the extent of impingement increases as the root is approached. The

migration of the impingement region towards the upper surface as the root was approached is due

to the spanwise decrease in section lift or effective angle-of-attack.

As was the case for the wing, the collection efficiency differences between the isolated

and aircraft flow model for the horizontal tail were small at the tip but increased as the root was



approached(Fig. 16).As theroot is approachedthedifferencein maximumcollectionefficiency
betweenthetwo modelsincreased,with theactualmodelproducinglowervalues.Also astheroot
wasapproachedtheregionof impingementfor theaircraftmodelmovedincreasinglytowardsthe
uppersurfaceof theairfoil relativeto theisolatedmodel.Thesedifferencescanonceagainbe
attributedto thedifferencesin effectiveangle-of-attack.Theaircraftmodelsawasmallereffec-
tive angle-of-attackthantheisolatedmodelandthisdifferencein effectiveangle-of-attack
increasedastherootwasapproached.Hencetheregionof impingementof theaircraftmodelrel-
ative to theisolatedmodelwasmoretowardstheuppersurfaceandit movedincreasinglytowards
theuppersurfaceastheroot wasapproached

Theice accretionshapesfor boththerime andmixedconditionsfor bothhorizontaltail
flow modelsareshownin Figures17-20.As for thewingiceaccretions,aroughnessfactorof
.0013m wasusedto producetheice shapes.Theiceaccretions,appearedreasonableandrepre-
sentativeof rime andmixedconditionsandfollowed thetrendsshownby thecollectionefficien-
cies.Thatis, the iceshapesizedecreasedandextentof impingementincreasedastheroot was
approached.The agreementin sizeandshapebetweentheiceaccretionsfor theisolatedandair-
craftmodelswasgood.Theiceaccretionsfor theactualmodelweremoretowardstheuppersur-
facerelativeto theisolatedflow modeldueto thelowereffectiveangle-of-attackof theaircraft
modelrelativeto the isolatedmodel.

V. CONCLUSION

In general, the calculated results were encouraging. The calculated flow looked reasonable

considering the angles-of-attack and the potential flow assumptions used. The calculated collec-

tion efficiencies and ice shapes were consistent with previous work and intuition. Comparisons

between the isolated flow model and the aircraft model were good for all but the most inboard sta-

tions for the wing and horizontal tail.

The flow solutions produced by the panel code appeared reasonable and followed tradi-

tional trends attributed to finite swept, tapered, twisted wing. The majority of the horizontal tail

and wing were of the same cross section, hence variation in the pressure distribution could be

attributed to effective angle-of-attack differences caused by geometric twist, taper and downwash.

In all cases the size and type of variation observed could be attributed to one of these effects.

Several trends with regard to collection efficiency were observed in the study. Because the

airfoil sections and sweep angle for a majority of the wing and tail were similar the trends in col-

lection efficiency could be mainly attributed to chord length, and local angle-of-attack. The maxi-

mum collection efficiencies decreased as the root was approached for both the wing and tail

models due to the increase in chord length. The limits of impingement for the swept, tapered wing

could be correlated to the local effective angle-of-attack. The effective angle-of-attack of the wing

increased as the root was approached due to the geometric twist, hence the limits of impingement

moved more towards the pressure side of the wing. The extent of impingement on the horizontal

tail, which was blunt and at a low angle-of-attack, increased as the root was approached due to the
increase in chord.

In general the calculated ice shapes were reasonable and representative of the rime and



mixedconditionsfrom whichtheywerederived.Theiceshapeheightor maximumthickness
decreasedastheroot wasapproachedfor bothconditionsfollowing themaximumcollectioneffi-
ciencytrend.Extentof iceshapealsofollowedtheextentof impingementtrend.

Thepressuredistribution,collectionefficiencyandiceaccretioncomparisonsbetweenthe
isolatedandactualflow modelsweregoodat all but themostinboardsectionswheretheisolated
flow modelyieldedmoreconservativeresults.Thedifferencesin thepressuredistribution,collec-
tionefficiency,andice accretionsbetweentheisolatedandaircraftsectionscanbeattributedto
affectiveangle-of-attackdifferencesbetweenthemodels.In thecaseof thewing, thefuselage
producedaslightly lowereffectiveangle-of-attackrelativeto the isolatedwing.For thehorizontal
tail thedownwashfrom thewing causedsmallereffectiveangle-of-attacksrelativeto the isolated
tail. Thequality of the isolatedcalculationsweregoodrelativeto theaircraftcalculationsfor the
work presented,butcautionshouldbeusedin extrapolatingtheseresultsto higherangles-of-
attack.At thehigherangles-of-attackthedifferencesin theeffectiveangle-of-attackfor bothmod-
elswill increaseresultingin poorercomparisons.Methodsto correcttheeffectiveangle-of-attack
in theisolatedcasesneedto bedevelopedto maketheisolatedsimplificationmoreviable.
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FIGURE 1. - PANEL REPRESENTATION OF AIRCRAFT MODEL USED IN AIRPLANE WING CALCULA-
TIONS.

FIGURE 2. - TOP VIEW OF ISOLATED WING PANEL MODEL.
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FIGURE 5. - COLLECTION EFFICIENCY AS A FUNCTION OF SURFACE DISTANCE AT SEVERAL

SPANWlSE LOCATIONS ON WING. FLIGHT CONDITIONS; AIRSPEED, 135 M/S, AAOA; 0 DEGREES,

DROP SIZE; 20 I_m, STATIC TEMPERATURE; -9.3 C, STATIC PRESSURE; 89867 Pa.
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FIGURE 11. - PANEL REPRESENTATION OF AIRCRAFT USED IN HORIZONTAL TAIL CALCULA-
TIONS.
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FIGURE 12. - TOP VIEW OF ISOLATED HORIZONTAL TAIL PANEL MODEL.
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